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Dynamics and stability of water bells
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The detailed experimental study conducted by Félix Savart in 1833 has revealed the
existence of water bells when a cylindrical jet of diameter D0 impacts with the velocity
U0 normally on to a disc of diameter Di. We continue this study with a Newtonian
fluid characterized by its density, ρ, kinematic viscosity, ν, and surface tension, σ.
We first show that for a given Reynolds number, Re ≡ U0D0/ν, and Weber number,
We ≡ ρU2

0D0/σ, the domain where the bells exist in terms of the diameter ratio,
X ≡ Di/D0, extends from the minimum value, X−:

X− =
62

We
,

up to the maximum value, X+:

17.6
X+

Re1/3

[
1 + 3.51

(
X+

Re1/3

)3
]

=
We

Re1/3
.

In the domain, X ∈]X−, X+[, the liquid film which results from the impact of the jet
detaches at the edge of the disc, forming an angle ψ0 with the direction of the jet. In
the non-viscous limit, we show that this angle is determined by the nonlinear equation

cos (ψ0)− cos (ψmax0 ) =
8X

We
sin (ψ0),

where ψmax0 corresponds to the limit of ψ0 for We � 1. In that limit, we find that
cos (ψmax0 ) ≈ 1− 0.352X2, for X < 1, and cos (ψmax0 ) ≈ 0.1 for X > 1.

The shape of the resulting bell is shown to be a catenary, first analytically described
by Joseph Boussinesq in 1869. This shape results from the equilibrium between surface
tension and centrifugal acceleration and is characterized by the length L ≡ D0We/16.
This solution holds in the low-gravity limit, gL/U2

0 � 1, and when the pressure
difference, p, across the liquid sheet is small, pL/(2σ)� 1. Considering the dynamics
of formation of that catenary, we show that it is characterized by a quasi-constant
velocity along the jet axis.

Finally, we show that these bells are not always stationary and may even undergo
self-sustained oscillations. Studying their stability, we derive a general stability crite-
rion and show the sensitivity of the bells to both the pressure difference across the
liquid sheet and to the ejection angle. In this latter case, we find a critical angle of
ejection above which the bell is periodically destroyed and created. The period of the
cycle is shown to scale linearly with the formation time of the bell.
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1. Introduction
In Paris in 1530, François I, King of France since 1515, decided at the request of

his maı̂tre de librairie, Guillaume Budé, to create the institution Le Collège Royal,
independent of the University of Paris, with the motto ‘DOCET OMNIA’: It teaches
everything. The lectures were free, open to everybody and given by the best professors
(Lecteurs) in the country. This institution became Le Collège de France in 1870. Felix
Savart begun to teach there in 1828 and was given the chair of ‘Physique Générale et
Expérimentale’ in 1836, following André-Marie Ampére. He died five years later on
March 18, 1841, at 50 years of age.

The funeral speech, given by his friend A. C. Becquerel, sheds some light on the
scientific approach of Savart: following his deep study of acoustics and electricity, he
wanted to lay the foundations for molecular physics. To this end, Savart started to
consider liquid jets as a flux of molecules, the size and the velocity of which can easily
be controlled, and the structure of which can be studied through their response to an
external forcing. This idea is set out by Savart in the introduction of his second out
of four papers dedicated to liquid jets:

Little attention has been paid so far to the phenomena involved in the impact of a
liquid jet on a solid surface with which it forms a defined angle: the modifications
introduced in the shape and in the state of the jet, as well as in the motion of the
molecules after the impact, are still completely unknown, even in the simplest case
one can imagine. However, it was easy to foresee that the study of such phenomena
could shed light on some peculiarities of jets, and even on the properties of the liquids
themselves.

The four papers published in 1833 deal with the general problem presented in figure
1(a). A cylindrical water jet of diameter D0[L],† impacts with the velocity U0[LT

−1],
normally onto a disc of diameter Di[L]. The Newtonian liquid being defined by its
density ρ[ML−3], kinematic viscosity ν[L2T−1] and surface tension σ[MT−2], for
similarity purposes, we characterize the initial fluid state with the non-dimensional
Reynolds, Re ≡ U0D0/ν, and Weber, We ≡ ρU2

0D0/σ, numbers that respectively
compare inertia to viscosity and surface tension. Depending on the geometrical
diameter ratio X ≡ Di/D0, several scenarios can be observed:

The singular limit X = 0, illustrated in figure 1(b), was the subject of the first paper
Savart (1833a) and revealed the capillary instability of cylindrical liquid jets that was
treated later by Plateau (1873) and Lord Rayleigh (1879).

The opposite limit X � 1, leads to the so-called hydraulic jump phenomenon,
where a thick and quiescent layer of fluid is connected to the jet through a thin and
rapid layer as presented in figure 1(d). The size of this stationary connecting region
critically depends on both the injection parameters and the limit conditions at infinity
Savart (1833b), Watson (1964).

In the intermediate domain X ∼ 1, the liquid film is ejected from the impactor with
the angle ψ0 and Savart has shown that one can observe symmetrical water bells such
as the one presented in figure 1(c).

Water bells and hydraulic jumps were together described in the second and third
papers Savart (1833b, c) while the fourth (Savart 1833d) considered the impact of two
facing jets.

Among all the observations and questions addressed by Savart in these papers, we
concentrate here on the water bell problem. Following in Savart’s footsteps, several

† Terms in brackets indicate the dimension of the parameter: [L] length, [T ] time, [M] mass.
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Figure 1. Presentation of the problem addressed by Felix Savart: (a) sketch of the experiment;
(b) capillary water jet instability from Savart (1833), Pl2, D0 = 6 mm, Re = 9000 and We = 200;
(c) water bell from Savart (1833), P l6 − Fig14 − N◦6, Di/D0 = 9, Re = 16300 and We = 1277;
(d) hydraulic jump from Savart (1833), P l5−Fig10−N◦5, Di/D0 = 117, Re = 14320 and We = 626.

studies have already been devoted to this subject, starting with two theoretical papers
by Joseph Boussinesq in 1869 that give the general equations of the stationary bell
shape, resulting from the equilibrium of several effects: surface tension, gravity, and
inertia. In the limit where gravity is small compared to the two other contributions
(surface tension and inertia), Boussinesq shows that the bell shape reduces to a
catenary. Recently, Benedetto & Caglioti (1998) have deduced the catenary solution
of Boussinesq from a stationary action principle. Experimentally, Bond (1935) used
liquid bells to measure surface tension under dynamical conditions, and Hopwood
(1952) described some remarkable shapes obtained when there is a difference of
pressure between the inside and the outside of the bell. Shapes of bells were also
studied theoretically by Lance & Perry (1953) and Taylor (1959) neglecting the motion
of air inside the bell. Air motion was further studied by Parlange (1967). The extension
of these studies to the case of swirling water bells was done by Bark et al. (1979),
showing that in certain circumstances, the shape of a bell can be periodic along the
axis of rotation.

Despite all the studies already devoted to water bells, several questions remain
open concerning the criterion of detachment of the film from the impactor, the angle
of ejection of the film, the dynamics of formation of the bell and its stability. These
questions are addressed in the present paper in the low gravity limit, that is for
ejection diameters D0 not too large compared to the capillary length a ≡ √2σ/(ρg),
where g[LT−2] is the acceleration due to gravity. Defining the Bond number as the
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Figure 2. Domain of investigation in the parameter space (Bo,X).

ratio Bo ≡ D0/a, the domain in which our study is conducted is shown shaded in
figure 2, in the parameter space (Bo,X).

The singular limit (X = 0, Bo = 0) that does not lead to a water bell is outside
the scope of this study. If the diameter ratio X gets too large, X > X+, one observes,
instead of a bell, a hydraulic jump on the disc and the trickling of water at the
edges. The bell regime is thus confined in the domain X ∈]X−, X+[. If gravity effects
dominate surface tension effects, the shape of the liquid sheet would result from an
equilibrium between inertia and gravity and one would expect to observe a paraboloid
of revolution instead of a bell. In this paper, we focus on the opposite limit where
gravity effects can be neglected in comparison to capillary effects and we will show
that this condition is fulfilled when Bo 6 1.

Finally, throughout, the effect of the surrounding air is neglected. According to
Squire (1953) and Huang (1970), this assumption is satisfied for moderate Weber
numbers, We < 1000.

Section 2 describes the experimental setup used to produce and study the water
bells. The experimental results and the models are respectively presented in § 3 and
§ 4, prior to the conclusions in § 5.

2. Experimental setup
The general setup is presented in figure 3(a). Distilled water of density, ρ =

1000 kg m−3, surface tension, σ = 0.073 kg s−2, and kinematic viscosity, ν = 10−6m2 s−1,
is initially contained in a pressurised reservoir. At the reservoir exit, two flow meters
aalborg, in a parallel setup allow the control of the flow from 0.2 cm3 s−1 to 70 cm3 s−1

with a graduation resolution of 0.2 cm3 s−1. This enables an accurate control of the
jet velocity U0, defined as the ratio of the flow rate to the exit section area. Since the
Froude number, Frh = gh/U2

0 , based the distance, h, from the nozzle to the impactor
never exceeded 10−2, the contraction and acceleration of the jet prior to the impact is
neglected throughout.

The geometrical properties of the remaining two control parameters, D0 and Di,
are presented in table 1. Three different nozzles are used to vary D0 from 0.8 mm to
6.0 mm. The 0.8 mm jet is obtained with a thin hole in the wall of diameter, D = 1 mm,
which leads to an effective jet diameter D0 ' 0.8D; the theoretical derivation of the
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Figure 3. Presentation of the experimental set-up: (a) general view, (b) detail of the impactor.

D0 (mm) 0.8 3.0 6.0

Di (mm)

{
1.18 1.6 2.0 2.4 3.0 4.0 5.44 7.33
9.87 13.3 17.91 24.13 32.51 43.79 58.99 107.4

Table 1. Geometrical properties of the jet diameter, D0, and of the impactor diameter, Di.

contraction coefficient for thin holes D0/D =
√
π/(π+ 2) can be found in Landau &

Lifchitz (1971). The 3 mm and 6 mm jets are created with a conical contraction, 25 mm
long and 20 mm wide at the base. This leads to a contraction factor in cross-sectional
area of 44 and 11 respectively, which ensures a quasi-top-hat velocity profile and a
laminar jet up to Reynolds numbers of the order of Re ≈ 30 000.

The general shape of the impactor is presented in figure 3(b). Machined in alu-
minium, these impactors all have sharp edges with a carefully prepared upper surface.
Their diameters range from 1.18 mm to 107.4 mm in the quasi-geometrical progression
presented in table 1.

The apparatus is a closed loop to always use the same fluid and keep its charac-
teristics constant. When the reservoir is almost empty, the experiment is stopped and
the reservoir is filled up via a peristaltic pump.

Several results from Savart will be used and discussed in the present paper. For this
reason, the experimental setup he used to produce water bells is presented in figure 4.
A 4.44 m long tube TT′, of diameter 54 mm connects the constant-level reservoir B to
the hole in T′ via the valve P. The exit velocity is measured through the pressure which
is controlled in EE′E′′. The exit hole of size D, is a thin hole in the wall shown in figure
4 (Fig. 4), which leads to an effective jet diameter D0 ' 0.8D. The impactor in brass
is shown in figure 4 (Fig. 3) with sharp edges and a carefully polished upper surface.

3. Experimental results
The presentation of our experimental results starts with a qualitative description

of the influence of the control parameters, Di, U0 and D0. This overview is completed
with a quantitative second stage in which the results are collected in five subsections,
concerning the detachment of the film from the impactor, the angle of ejection, the
shape of the bells, the dynamics of their formation, and finally their stability.
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Figure 4. Experimental setup used by Savart (from Planche 4 of Savart’s 1833 papers).

3.1. A qualitative overview

Figure 5 presents, for a fixed diameter, D0 = 3 mm, and a fixed velocity, U0 =
2.08 m s−1, the influence of the impact diameter Di. Under these conditions, Reynolds
and Weber numbers are kept constant, Re = 6240, We = 178, and only X ≡ Di/D0

is varied. This set of experiments is conducted in the following way: the water jet is
established and controlled at the beginning of the experiment without any impactor.
The first impactor is then introduced on the axis of the jet. To avoid any hysteresis
effect and to ensure that all the tests have the same initial conditions, we use a strong
air jet to deviate the water jet from the impactor. The air jet is then removed and the
stationary solution of the impact observed. This procedure is repeated several times
to ensure that the observed solution is stable. The impactor is then replaced without
touching the liquid jet and the whole procedure repeated with a new disc.
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Figure 5. Influence of the impact diameter, Di, for D0 = 3 mm, U0 = 2.08 m s−1, Re = 6240,
We = 178: (a) Di = 1.18 mm, (b) 3.0 mm, (c) 4.0 mm, (d) 5.44 mm, (e) 7.33 mm, (f) 9.87 mm,
(g) 13.3 mm, (h) 17.81 mm, (i) 24.13 mm, (j) 32.51 mm, (k) 43.79 mm, (l) 58.99 mm.

From (a) to (l) the impactor diameter is progressively increased from Di = 1.18 mm
to Di = 58.99 mm. The spatial scale is kept the same from (a) to (k) and slightly
reduced in (l), as indicated by the double arrow. For the smallest impactor (a), we
observe that the water jet does not detach but rather surrounds the whole impactor
and flows along its sides. Increasing the impact diameter, one reaches the critical value
X−, presented in figure 2, above which the film detaches at the edge of the impactor.
Clearly, (b), obtained with X = 1, is above X−. The liquid film is ejected from the
impactor with a non-zero angle ψ0 and exhibits a symmetrical shape about the equator
plane, defined as the location of the maximal extension points. From (b) to (f), as the
impact diameter becomes larger, the angle of ejection ψ0 increases. This monotonic
evolution stops between (f) and (g) and is replaced by the opposite tendency where
ψ0 decreases as Di increases. This new behaviour continues up to (j) where the liquid
film remains attached to the impactor. At this point, the critical diameter ratio X+,
is passed and we deduce that for these conditions, 8.04 < X+ < 10.84. In (j) and (k),
the liquid film runs down the impactor without any detachment or hydraulic jump.
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Figure 6. Figure 11 of Savart Planche 5: D0 = 4.7 mm, U0 = 5.5 m s−1, Re = 25850, We = 2031 and
N◦1: Di = 0.65 cm, N◦2: Di = 4.05 cm, N◦3: Di = 5.40 cm, N◦4: Di = 10.80 cm, N◦5: Di = 16.30 cm,
N◦6: Di = 55.00 cm.
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20.0 mm20.0 mm20.0 mm(m) (n) (o)

9.93 mm9.93 mm9.93 mm

5.64 mm5.64 mm5.64 mm

5.64 mm5.64 mm5.64 mm

3 mm3 mm3 mm

Figure 7. Influence of the impact velocity U0 for D0 = 3 mm, Di = 9.87 mm: (a) U0 = 0.63 m s−1,
(b) 1.0 m s−1, (c) 1.08 m s−1, (d) 1.2 m s−1, (e) 1.42 m s−1, (f) 1.57 m s−1, (g) 1.68 m s−1, (h) 1.87 m s−1,
(i) 2.08 m s−1, (j) 2.25 m s−1, (k) 2.42 m s−1, (l) 2.65 m s−1, (m) 2.88 m s−1, (n) 3.43 m s−1, (o) 3.67 m s−1.

With the set of impactors used, the hydraulic jump on the impactor is first observed
for X = 19.7 and presented in (l).

Some observations of Savart on the influence of the impactor diameter are reported
in figure 6. These results were obtained, keeping U0 = 5.5 m s−1 and D0 = 4.7 mm,
and increasing, from left to right, the diameter ratio X from 0.84 to 5.3, 7, 14, 21 and
72. This variation lead from open bells (N◦1, 2 and 3) to closed bells (N◦4 and 5)
and then from closed bells to the hydraulic jump (N◦6).

To consider the influence of the jet velocity U0, figure 7 presents for the fixed jet
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(a) (b)17.9 mm 9.87 mm

Figure 8. Influence of the jet diameter D0: (a) D0 = 6 mm, Di = 17.91 mm, U0 = 1.19 m s−1,
ψ0 = 73.8◦, X = 2.985, We = 116 and Re = 7140; (b) D0 = 3 mm, Di = 9.87 mm, U0 = 1.68 m s−1,
ψ0 = 72.2◦, X = 3.29, We = 116 and Re = 5040.

diameter, D0 = 3 mm, and the fixed impactor diameter, Di = 9.87 mm (X = 3.3),
the evolution of the liquid spreading when the velocity U0 is increased from 0.63 to
3.67 m s−1, from (a) to (o). We use the air jet procedure described above to check the
stability of the solution presented. In this figure, the scale of each picture is adapted
to the observed phenomenon. Figure 7 reveals that at low velocities, (a, b), the liquid
spreads over the impactor and does not detach from it. A closer observation of (b)
indicates that air bubbles start to be trapped in the streaming liquid. In (c), the film
detaches and forms the first bell, characterized by a small angle of ejection ψ0 and a
symmetrical shape about the equatorial plane. This symmetry is not affected by the
velocity and can be observed from (c) to (n). The angle of ejection ψ0 first increases
rapidly with the velocity from 60.6◦ in (c) to 70◦ in (e). This monotonic evolution
continues but with a slower rate from (e) to (o) where ψ0 reaches 81.2◦. In this second
domain, where the angle does not depend strongly on the velocity, the liquid bells
we observe do not exhibit strong differences from one to the other. From (c) to (l),
all the bells are closed. The last three pictures (m–o) exhibit holes in the liquid sheet
around the closing point. The size of these holes increases with the velocity.

The influence of the jet diameter D0, is presented in figure 8: (a) shows a closed bell
obtained with the 6 mm injector whereas (b) was taken with the 3 mm injector. To
illustrate the effect of the jet diameter only, we have kept constant the ratio, X ' 3,
and the Weber number, We = 116. Both pictures have been rescaled so as to appear
with the same jet diameter. The comparison of (a) with (b) reveals that the angle of
ejection ψ0 remains almost constant, ψ0 = 73.8◦ in (a) and ψ0 = 72.2◦ in (b) whereas
the symmetry about the equatorial plane is broken for the 6 mm jet, the equatorial
plane being closer to the impactor than to the closing point.

Some of Savart’s observations on the influence of D0 are reported in figure 9,
where from (a) to (f), the jet diameter is decreased from 14.4 mm to 2.4 mm. In these
experiments, the impact diameter is kept constant, Di = 27 mm, and the velocity
adjusted so as to get the largest closed bell. From figure 9, we notice that the smaller
the jet diameter, the closer we get to a symmetrical shape.

3.2. On the detachment of the film from the impactor

The formation of a water bell depends on the detachment of the film from the im-
pactor, as illustrated in figures 5 and 7. Figure 5 indicates that for a given jet diameter
and velocity, two limits in terms of the diameter ratio X, can be identified, X− and
X+, outside which the liquid film remains attached to the impactor. In the case of a
fixed jet diameter and diameter ratio, figure 7 shows that bells can only be observed
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Figure 9. Savart’s observations of the influence of the jet diameter: (a) D0 = 14.4 mm,
U0 = 2.06 m s−1, (b) D0 = 12 mm, U0 = 2.15 m s−1, (c) D0 = 9.6 mm, U0 = 2.54 m s−1,
(d) D0 = 7.2 mm, U0 = 2.67 m s−1, (e) D0 = 4.8 mm, U0 = 3.16 m s−1, (f) D0 = 2.4 mm,
U0 = 5.66 m s−1.
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X– (6) X– (3) X+ (3) X+ (6)

Figure 10. Evolution of the critical velocity of detachment U0, with the diameter ratio X = Di/D0

(10% error bars): �, D0 = 0.8 mm; �, D0 = 3.0 mm; •, D0 = 6.0 mm.

above a critical velocity. The function U0(X), between this critical velocity and the
diameter ratio is presented in figure 10 for the three different jets diameters, 0.8 mm,
3.0 mm and 6.0 mm. All the points presented in figure 10 are obtained with the set
of diameters presented in table 1 and through the same experimental procedure: for
a given jet and impactor diameter, the velocity is progressively increased until the
liquid film detaches from the impactor. To avoid any hysteresis effect, we use, after
each velocity increase, the strong air jet procedure previously described. The whole
procedure is then repeated with a different diameter ratio, and with the different jet di-
ameters. With this procedure, the experimental uncertainty lies in the velocity, and the
repeatability of the experiments indicates that this uncertainty is of the order of 10%.
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Figure 11. Evolution of the angle of ejection ψ0: (a) with the velocity U0 (�, D0 = 3 mm and
Di = 9.87 mm; �, D0 = 3 mm and Di = 4 mm); (b) with the diameter ratio and large velocity
(�, D0 = 0.8 mm; �, D0 = 3.0 mm; •, D0 = 6.0 mm).

We first concentrate on the function U0(X) obtained with D0 = 6 mm, which
is shown with black circles in figure 10: this function presents a minimum U0 ≈
0.71 m s−1 for X = Xc ≈ 1.5. For D0 = 6 mm, no water bell can thus be observed
below that velocity, whatever the diameter ratio, X. Above that critical velocity, the
water bell region extends between the two intersections of the function U0(X) with
the horizontal line U0 > U0(Xc). For U0 = 2 m s−1, the two intersections X−(6) ≈ 0.2
and X+(6) ≈ 13.8 are shown in figure 10.

The function U0(X) obtained with D0 = 3 mm (open squares) is similar to the
one just described. The critical value Xc is found to be of the order of 1.5 and
the corresponding velocity U0(1.5) ≈ 1.05 m s−1. For a given diameter ratio X, the
critical velocity for which the film detaches is always larger for D0 = 3 mm than for
D0 = 6 mm. This behaviour implies that for a given velocity U0 = 2 m s−1 > U0(Xc),
the water bell region is always smaller for D0 = 3 mm than for D0 = 6 mm. According
to figure 10 this region extends from X−(3) ≈ 0.41 up to X+(3) ≈ 8.

The function U0(X) obtained with D0 = 0.8 mm (black squares), only exhibits
an increasing behaviour with X, but we were not able with our set of diameters to
investigate the region X 6 1. However, this function confirms that for a given diameter
ratio X, the critical velocity for which the film detaches increases as D0 is decreased.
For X = 10, we measure U0(6) = 1.6 m s−1, U0(3) = 2.4 m s−1 and U0(0.8) = 5.8 m s−1.

3.3. The angle of ejection ψ0

When the film detaches from the impactor, it makes an angle ψ0 with the axis of the
jet. For a given jet diameter, the sensitivity of this angle to both the diameter ratio
X, and the velocity U0, has been highlighted in figures 5 and 7.

The evolution of ψ0(U0) corresponding to figure 7 is presented in figure 11(a) as
black squares. Starting with a small value ψ0 = 60.6◦ close to the critical velocity of
ejection, the angle increases with the velocity up to a maximal angle ψmax0 ≈ 81.2◦.
The function ψ0(U0) is nonlinear, it increases strongly close to the critical velocity,
for 1 < U0 < 2 m s−1, and relaxes to ψmax0 for U0 > 2 m s−1.

On figure 11(a), we also present the function ψ0(U0) obtained with D0 = 3 mm and
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Figure 12. Variation of the shape of the bell with U0 for D0 = 3.0 mm and Di = 9.87 mm. (a) An
example of the threshold method used to extract the bell shape for U0 = 2.08 m s−1. (b) evolution of
the bell profile for decreasing velocities (in m s−1): 3.67, 3.43, 2.88, 2.65, 2.42, 2.25, 2.08, 1.87, 1.68,
1.57, 1.42, 1.2, 1.08.

Di = 4 mm. The evolution is similar to the one just described, but the maximal angle
is lower, ψmax0 = 64.2◦.

The function ψmax0 (X) is presented in figure 11(b) for the three diameters D0 =
0.8 mm, D0 = 3.0 mm and D0 = 6.0 mm. This figure reveals that ψmax0 is a function
only of X; it increases linearly with X in the range X < 1.77 and saturates at 84◦–85◦
for X > 1.77.

3.4. The shape of water bells

The liquid film detaches from the impactor with the angle ψ0 and we observe the
resulting bell which can be open or closed, stable or unstable. We first concentrate on
stable bells, the shapes of which remain stationary. The shapes of these stable bells
have been qualitatively described in figure 7 and a new example is presented in figure
12(a), where the result of the edge detection algorithm is superposed on the picture
as a black continuous line.

Applying this method to the different water bells presented in figure 7, we obtain
the shape evolution presented in figure 12(b). This evolution shows that, even if the
shape is not intrinsically altered by the velocity, the radial extent of the liquid sheet
is very sensitive to that parameter: in figure 12(b), as the velocity is increased by the
factor 3.4, from 1.08 to 3.67, the radial extent is multiplied by 10.6.

The first closed bell is the one corresponding to U0 = 2.65 m s−1. Above this limit,
the bells are open as in figure 7(m–o) and one notices that the point where they break
does not always correspond to the maximal diameter.

3.5. The dynamics of formation of the bell

The dynamics of formation of water bells is observed with a high-speed Kodak
4500HS video camera. Two examples of bell formation are presented in figures 13
and 14. In these figures, time increases from left to right and from top to bottom.
Both sequences have been obtained using the same procedure: the water jet is initially
established and we use a plastic hollow tube to deviate its trajectory from the impactor.
When the setup of the camera is completed, the plastic tube is removed and we observe
the impact of the jet on the disc. The main drawback of this procedure is that the
leading edge of the jet is initially roughly defined as it can be seen in the first image
of each sequence. However, this procedure ensures that the jet velocity and diameter
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10 mm

Figure 13. Dynamics of formation of the bell obtained with D0 = 3 mm, Di = 7.33 mm,
U0 = 2.25 m s−1 and ψ0 = 74.7◦. Time increases from left to right and from top to bottom
with the time step ∆t = 15.5 ms.

10 mm

Figure 14. Dynamics of formation of the bell obtained with D0 = 3 mm, Di = 4.0 mm,
U0 = 2.05 m s−1 and ψ0 = 61◦. Time increases from left to right and from top to bottom with
the time step ∆t = 7.77 ms.

remain constant over the whole formation process and allows a reasonable definition
of the edge of the liquid sheet outside the impactor. The dotted line in each picture
represents the stationary shape of the bell. This shape is extracted from an image
captured one or two minutes after the end of the formation process. The first sequence
presented in figure 13 corresponds to a 3 mm jet diameter impacting on a 7.33 mm
disc with the velocity U0 = 2.25 m s−1. The corresponding ejection angle is ψ0 = 74.7◦
and the formation time Tf , is of the order of 11∆t ≈ 170 ms, where ∆t = 15.5 ms is the
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Figure 15. Instability of a closed water bell triggered by an upward moving liquid bulge, observed
with D0 = 0.8 mm, Di = 4.0 mm, U0 = 5.33 m s−1 and ψ0 = 75◦. Time increases from left to right
and from top to bottom with the time step ∆t = 2.22 ms.

time step between images. The trajectory of the edge of the sheet is characterized by an
expanding phase followed by a contracting one. According to figure 13, both phases
have approximately the same duration, Tf/2. It is also remarkable that the unsteady
trajectory of the edge superposes on the steady trajectory of the liquid particles,
defined by the stationary bell shape. For the same jet diameter, figure 14 presents the
dynamics of formation of the bell obtained with Di = 4.0 mm and U0 = 2.05 m s−1.
The corresponding ejection angle is ψ0 = 61◦. This sequence is similar to the one just
presented except that the time step is reduced by a factor of 2.

3.6. Stability of water bells

The discussion on stability that we develop in this article completes and expands the
ideas presented in Clanet (2000). Stable water bells are characterized by a stationary
shape which can be either closed or open. In this subsection, we consider unstable
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Figure 16. Instability of a closed water bell triggered by a pressure perturbation, observed with
ψ0 = 77◦, D0 = 3.0 mm, Di = 9.87 mm and U0 = 2.7 m s−1. Time increases from (a) to (o) with the
time step ∆t = 35.5 ms.

bells, the shape of which changes with time, and we have already mentioned that
these unstable bells are always closed.

Perhaps the more intuitive instability is the one presented in figure 15. In this
figure, a 0.8 mm jet impacts on a 4 mm disc with the velocity U0 = 5.33 m s−1 and
forms a bell. As in the previous sequences, time increases from left to right and from
top to bottom with the time step ∆t = 2.2 ms. The dynamics of formation extends
from (a) to (p) and is similar to the one presented in figures 13 and 14. However,
following the closing of the bell, we observe that one part of the impinging liquid
moves up towards the edges of the disc. This upward motion is indicated with arrows
in figure 15(q, r, s, t). Once this bulge of liquid reaches the edge of the impactor, it
destabilizes the whole liquid sheet, which undergoes a complete shape transformation
prior to the formation of a new bell. The whole process is repeated periodically and
in the case presented in figure 15 the period of creation–destruction, is of the order
of 30∆t = 66 ms. With this mechanism, the axisymmetry of the problem is broken
when the bulge reaches the edge and the shape is tilted at the beginning of the
transformation, indicating the point of impact of the bulge.

Another mechanism of instability is presented in figure 16. The time step is ∆t =
35.5 ms and we observe a 3 mm jet impacting on a 9.87 mm disc with the velocity U0 =
2.7 m s−1. Starting the experiment with a stable open bell (a), we progressively decrease
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Figure 17. Instability of a closed water bell characterized by a large angle of ejection ψ0 = 87◦,
observed with D0 = 3.0 mm, Di = 10.0 mm and U0 = 2.21 m s−1. Time increases from (a) to (t) with
the time step ∆t = 27.7 ms.

the flow rate. According to figure 12(b), this reduces the size of the bell, but as the
bell closes the decrease of the flow rate starts to compress the air inside the bell. This
pressure increase, at one point, destabilizes the whole bell with a similar scenario as the
one observed in figure 15, except that here, the axisymmetry is conserved. This shape
transformation leads to the bursting of the liquid sheet and thus to the equality of
the pressure between the inside and the outside of the bell. The triggering mechanism
is thus removed at the bursting and if we stop decreasing the flow rate when the bell
closes, we obtain a stable bell, similar to the original one but a little smaller, since
the flow rate has been reduced in between. If we continue to decrease the velocity,
the bell will undergo a similar transformation and we can get up to 10 generations
of bells, each smaller than the previous one and larger than the following one.

This cascade was noticed by Savart when he considered the emptying of a cylindrical
tube through a thin hole of 12 mm perforated at the centre of the bottom part of the
tube. Looking at the impact of the resulting vertical jet on a 27 mm disc, he reports:

for a liquid pressure of 32 to 33 cm of water column, the water bells close completely
taking the shape of a solid of revolution with 40 cm in diameter and 45 cm in height,
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Figure 18. Presentation of the detachment problem: (a) structure of the flow at the edge
of the disc, (b) structure of the flow in the film.

perfectly clear and with a curve generator that looks like a semi-lemniscate. From this
time on, the bell decreases slowly in volume; but when the pressure does not exceed 10
to 12 cm, its shape changes rapidly and after a short time, the first shape is recovered.
These instantaneous shape changes happen periodically up to 7 or 8 times until the
bell always decreasing in volume completely disappears.

Perhaps the more puzzling instability is the one presented in figure 17, where a
3.0 mm jet impacts on a 10.0 mm impactor with the velocity U0 = 2.21 m s−1. In this
experiment, the impactor is not flat but slightly conical so that the resulting liquid
sheet is ejected with the angle ψ0 = 87◦. We observe that with a constant flow rate and
without any bulge perturbation, the bell also undergoes an unstable cycle of creation
and destruction with a period T ≈ 20∆t = 0.55 s. During the whole transformation
the axisymmetry is conserved and the resulting bell observed in (t) has the same
dimensions as the initial one (a).

Although the origin of the three instabilities presented in figures 15, 16 and 17 is
different, we observe that the response of the bell to recover its stability is almost
the same in the three cases: the symmetry about the equatorial plane is first broken
and the ejection angle increases up to a point where the bell changes its downward
curvature for an upward one. This curvature switch leads to a closing of the liquid
sheet onto the feeding jet which destroys the whole bell. In figures 15 and 16, we
observe that the liquid film can also be broken during the curvature inversion and
prior to the closing of the sheet on the jet.

4. Models
This section is devoted to the presentation and analysis of models intended to

improve the understanding of the experimental results just described. The study of
the flow is conducted using the nomenclature presented in figure 18(b), where r and z
respectively are the radial and vertical axes, the origin of the coordinate system being
the impact point of the jet. Also, u(r, z) and w(r, z) are the corresponding velocity
components, and h(r) the film thickness at the location r.

4.1. On the detachment of the film from the impactor

The problem of the detachment of the film at the edge of the impactor is presented in
figure 18(a): the liquid film reaches the edge, ri ≡ Di/2, with the velocity profile u(ri, z),

and the thickness h(ri). At this location, the inertia force Fin ≈ ρπDi
∫ h(ri)

0
u(ri, z)

2 dz
tends to detach the film whereas the capillary action Fc ≈ 2σCS tries to keep the film
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attached to the impactor. In this expression for the capillary force, C ≈ 1/h(ri) + 1/ri
represents the total curvature of the liquid at the edge, and S ≈ πDih(ri) the surface
on which Fc is applied. The factor 2 accounts for the two sides of the liquid sheet
when it detaches. The detachment of the film occurs when Fin > Fc. Using the above
expressions for the forces, this criterion can be written∫ h(ri)

0

u(ri, z)
2 dz >

2σ

ρ

(
1 +

h(ri)

ri

)
. (4.1)

The main factor we need to discuss the detachment problem is the remaining mo-

mentum flux in the film when it reaches the edge of the disc, I(ri) ≡ ∫ h(ri)0
u(ri, z)

2 dz.
The complete analysis of the radial spread of a liquid jet over a horizontal plane was
performed by Watson (1964) and we just recall the origin of the results we need.

The inviscid limit of the spreading problem reduces to a potential flow with free
streamlines, the solution of which can be written

u(r, z) = U0, w(r, z) = −U0z/r, h(r) =
1

8

D2
0

r
= hmin . (4.2)

This solution, valid for r > D0/2, reveals a constant radial velocity and a film thickness
decrease as 1/r. This value of the film thickness is increased by the boundary layer
and is therefore referred to as hmin , the minimum value of h. In this inviscid limit, the
remaining momentum flux is simply

I(r) ≡
∫ h(r)

0

u(r, z)2 dz =
U2

0D
2
0

8r
= Imax . (4.3)

This value Imax is the maximum value of I since no losses have been considered. For
the Reynolds number in the film, Reh ≡ U0h/ν, we get

Reh(r) =
1

8
Re
D0

r
. (4.4)

As expected, the effect of viscosity increases with the radial distance r.
Considering the effect of viscosity, the boundary layer approximations reduce the

description of the flow in the film to the set of equations

∂u

∂r
+
u

r
+
∂w

∂z
= 0, (4.5)

u
∂u

∂r
+ w

∂u

∂z
= ν

∂2u

∂z2
, (4.6)

where (4.5) ensures mass flux conservation and (4.6) describes the decrease of the
film momentum due to viscosity. In the momentum evolution equation (4.6), the
gravitational pressure term, G ≡ g dh/dr, has been neglected in front of the viscous
term, V ≡ ν(∂2u/∂z2). This assumption can be discussed using an order of magnitude
analysis based on the inviscid results presented in (4.2), from which G ' gD2

0/(8r
2),

and V ' 64νU0r
2/D4

0, so that V/G ' 512(r/D0)
4νU0/(gD

2
0). Considering the range

r/D0 > 1, this ratio is always larger than 10 in our applications, which justifies the
form of the momentum evolution equation (4.6). This system must be solved with the
boundary conditions

u(r, 0) = w(r, 0) = 0, (4.7)
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∂u

∂z

∣∣∣∣
z=h(r)

= 0, (4.8)

r

∫ h(r)

0

u(r, z) dz = 1
8
D2

0U0, (4.9)

where the solid boundary conditions (4.7) are completed by a free surface condition
with no shear (4.8) (the effect of the friction with the surrounding air is neglected)
and by the constant-volume flux condition (4.9).

To integrate this system of boundary layer equations, we identify three different
regions (respectively denoted (i), (ii) and (iii) in figure 18b):

(a) an internal region (i) defined by r ∼ D0/2 where the speed outside the boundary
layer, δ, rises rapidly from 0 at the stagnation point to U0, and the boundary layer
thickness is δ ∼√νD0/U0. In this region we will consider that I ≈ Imax .

(b) an external region (ii and iii), defined by r > D0/2, where the stream lines
almost remain parallel and where we look for solutions of the type

u(r, z) = U(r)f(z/δ(r)). (4.10)

In this external region, we distinguish the region (ii) where the boundary layer δ(r),
is smaller than the film thickness h(r), and where the velocity outside the boundary
layer is constant U(r) = U0, from the region (iii), where the whole film thickness
corresponds to the boundary layer, h(r) = δ(r), and where U(r) < U0. The transition
from (ii) to (iii) happens at the radial location r0, defined by h(r0) = δ(r0).

In region (ii), the results obtained by Watson can by summarized as

δ(r) ≈ 2.586

√
νr

U0

, (4.11)

h(r) ≈ hmin + 0.385δ(r), (4.12)

and

I(r) ≈ Imax − δ(r)U2
0

7.16
. (4.13)

Using equations (4.11) and (4.12), together with the definition of r0, we can evaluate
the location of the transition between regions (ii) and (iii) as

r0 ≈ 0.183D0Re
1/3. (4.14)

For a typical value Re = 6000, we observe that the transition occurs at 3.3 jet
diameters.

In the self-similar region (iii), Watson shows that the flow in the film is characterized
by the evolutions

h(r) = δ(r) = D0

4.83

Re

r3 + l3

D2
0r

, (4.15)

U(r) ≈ U0

Re

23.8

D3
0

r3 + l3
, (4.16)

and

I(r) ≈ Re

246.5

D4
0

(r3 + l3)r
U2

0D0. (4.17)

The constant of integration, l, which appears in equations (4.15), (4.16) and (4.17)
is determined by the condition that the free surface velocity U(r) in (4.16) must be
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Figure 19. Detachment of the film from the impactor. (a) X > 1: �, D0 = 0.8 mm; e, D0 = 3.0 mm;
4, D0 = 6.0 mm; dotted line, equation (4.21); bold continuous line, equation (4.19); thin continuous
line, equation (4.20). (b) X < 1: �, D0 = 3.0 mm; e, D0 = 6.0 mm; dotted line, ρU2

0Di/σ = 62.

equal to U0 at r = r0. This condition leads to

l ≈ 0.329D0Re
1/3. (4.18)

We now have the full description of the radial spread of the jet over the disc in the
different regions identified in figure 18(b) and we can concentrate on the detachment
problem.

In the limit X > 1, where h(ri)/ri � 1, the criterion (4.1) reduces to I(ri) > K1(2σ/ρ),
where K1 > 1 is a constant to be determined experimentally what indicates by what
amount the momentum flux I(ri) has to be larger than the attaching capillary effect
for the detachment to occur. Using the momentum flux expressions obtained in region
(ii), this equality can be written

We

Re1/3
> 8K1

Y

1− 1.02Y 3/2
, (4.19)

where Y ≡ X/Re1/3. According to equation (4.14), this expression holds up to
Y = 0.366. For larger values of Y , we use the expressions obtained in region (iii)
which lead to

We

Re1/3
> 8.78K1Y (1 + 3.51Y 3). (4.20)

The inviscid flow described by (4.3) can also be written in the form We/Re1/3(Y ):

We

Re1/3
> 8K1Y . (4.21)

Compared to the above two expressions (4.19) and (4.20), this inviscid limit (4.21)
leads, for a given Y , to a smaller value of We/Re1/3, meaning that viscosity also
opposes the detachment. These results are compared to the experimental measure-
ments in figure 19(a), where the experimental measurements presented in figure 10
are plotted in the plane (We/Re1/3, Y ). For Y > 0.2, the results obtained with the
different jet diameters collapse on a single curve. The constant K1 is chosen so that
the inviscid limit (4.21) is tangent to the experimental data. This procedure leads to
K1 ≈ 2.0. Using this value, the relation (4.19) is presented as a bold line in the range
Y ∈ [0.1, 0.366] while equation (4.20) appears as a thin line in the range Y > 0.1. One
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Figure 20. Equilibrium of a liquid sheet element: (a) at the edge of the impactor
(b) far from the edge.

first notices that the behaviour of equation (4.20) is close to that of equation (4.19)
in the range Y ∈ [0.1, 0.366] where it is not supposed to apply. This is due to the
matching procedure used to connect regions (ii) and (iii). Moreover, equation (4.20) is
a good approximation of the behaviour observed experimentally for the whole range
Y > 0.2.

In the limit X < 1, where h(ri)/ri � 1, equation (4.1) reduces to I(ri) > K22σh(ri)/
(ρri), where K2 is a constant to be determined experimentally, similarly to K1. Using
the description of the flow in region (1), I(ri) = Imax , the above criterion takes the
form

ρU2
0Di

σ
> 4K2. (4.22)

This result is compared to the experimental measurements in figure 19(b), where the ex-
perimental measurements presented in figure 10 are plotted in the plane (ρU2

0Di/σ,X).
For X < 1, the experimental data are rather scattered but the constant behaviour
predicted by equation (4.22) appears to be reasonable with K2 ≈ 15.5.

In summary, for given Reynolds and Weber numbers, the liquid film detaches if the
diameter ratio X is in the range X ∈]X−, X+[, where X− is deduced from equation
(4.22):

X− =
62

We
, (4.23)

and X+ is implicitly given by equation (4.20):

17.6
X+

Re1/3

[
1 + 3.51

(
X+

Re1/3

)3
]

=
We

Re1/3
. (4.24)

4.2. On the angle of ejection

The model we propose to account for the evolution of the angle of ejection ψ0 shown
in figure 11, is presented in figure 20(a), where the bold arrows represent the different
forces and momentum fluxes involved in the equilibrium of the liquid sheet at the
edge of the impactor. Fi represents the force of the impactor, aligned with the axis of
the jet, and Fc is the capillary force, normal to the sheet. Writing the vertical force
balance, we obtain

ρπDiI(ri) cos (ψ0)− ρπDiImax = −Fi + Fc sin (ψ0). (4.25)



132 C. Clanet

1–
co

s(
ψ

0m
ax

)

co
s(

ψ
0
)–

co
s(

ψ
0m

ax
)

(a) (b)

X 2

10–2

10–1

100

1

10–2 10–1 100 101 102 103

0.9

10010–110–2
10–2

10–1

100

8X sin ψ0/We

Figure 21. Evolution of the angle of ejection ψ0: (a) with 8X sin (ψ0)/We (�, D0 = 3 mm and
Di = 9.87 mm; �, D0 = 3 mm and Di = 4 mm); (b) with X2, in the limit We� 1 (�, D0 = 0.8 mm;
�, D0 = 3.0 mm; •, D0 = 6.0 mm).

Using the expression for the capillary force Fc = 2CσS , with C ≈ 1/ri + 1/h(ri) and
S ≈ 2πrih(ri), equation (4.25) reduces to

I(ri)

Imax

cos (ψ0)− 1 = −4

π

Fi

ρU2
0D

2
0

+
8X

We

(
1 +

h(ri)

ri

)
sin (ψ0). (4.26)

In the limit We� 1, the second term of the right-hand side of equation (4.26) can be
neglected and the angle ψmax0 only depends on the action of the impactor. Through
the action–reaction law, Fi can be evaluated as Fi = (C1π/4)D2

i ρU
2
0 in the limit X < 1

and as Fi = (C2π/4)D2
0ρU

2
0 in the limit X > 1. The constants C1 and C2 are to be

determined experimentally.

In the low-viscosity limit, I(ri)/Imax ≈ 1, and equation (4.26) reduces to

1− cos (ψmax0 ) = C1X
2 for X < 1, (4.27)

and

1− cos (ψmax0 ) = C2 for X > 1. (4.28)

The function [1 − cos (ψmax0 )](X2) is presented in figure 21(b). In the limit X < 1,
the linear evolution of [1 − cos (ψmax0 )] with X2 is observed and the constant C1 can
be evaluated as C1 ≈ 0.352. This behaviour holds up to X = 1. Above this value,
[1−cos (ψmax0 )] remains almost constant as described by equation (4.28) with C2 ≈ 0.9.
For moderate Weber numbers, the influence of Fc cannot be neglected and equation
(4.26) can be written, using the results for ψmax0 ,

cos (ψ0)− cos (ψmax0 ) =
8X

We
sin (ψ0). (4.29)

This equation for ψ0 is valid in the limit h(ri)/ri � 1. The function [cos (ψ0) −
cos (ψmax0 )] is plotted versus (8X sin (ψ0)/We) in figure 21(a) for the two cases presented
in figure 11(a). The linear relationship described by equation (4.29) is observed with
a one-to-one correspondence.
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4.3. On the shape of the bells

Let us now consider the problem of the shape of water bells, using the notation
presented in figure 20(b). Notice that the z-axis is now pointing downwards, in the
flow direction.

The mass flux conservation at the curved location s takes the form

reu = 1
8
D2

0U0, (4.30)

where r, e and u respectively stand for the radial location, the film thickness and the
local velocity at the distance s from the detaching point. The momentum evolution of
the shaded element of surface δ2S , presented in figure 20(b) is first considered along
the tangent vector t, and leads to the evolution of the velocity

u2 = u2
e + 2gz, (4.31)

where ue ≡
√
I(ri)/h(ri) is the equivalent momentum velocity at the edge of the

impactor. Its value can be determined with the values of I(ri) and h(ri) obtained in
the three different zones identified in § 4.1.

In the direction −n, normal to the propagation, the equilibrium of the element is
achieved through the balance of capillary forces Fc = 2Cσδ2S , and gravity mg sin (ψ),
with the centrifugal force mu2/Rc, and the pressure difference action pδ2S:

(2Cσ − p)δ2S + mg sin (ψ) = m
u2

Rc
, (4.32)

where m ≡ ρδ2Se, is the mass of the element and C ≡ 1/Rc + cos (ψ)/r, its total
curvature, the sum of the two principle curvatures, 1/Rc, in the (n, t) plane and
cos (ψ)/r, in the (n,φ) plane. In equation (4.32), p is the pressure difference between
the inside and the outside of the bell. This difference is zero when the bell is open but
can be different from zero in the case of closed bells. Using U0 and L = D0We/16,
as the characteristic speed and length, the above equations (4.31) and (4.32) are
respectively reduced to

ũ2 = ũ2
e + 2βz̃, (4.33)

and

(ũ− r̃)dψ

ds̃
= − cos (ψ) + αr̃ − β sin (ψ)

ũ
, (4.34)

where α ≡ pL/(2σ) is the reduced pressure difference and β ≡ gL/U2
0 the reduced

gravity. All the dimensionless quantities are indicated with a tilde except angles. This
system of equations (4.33) and (4.34) has to be integrated with the initial conditions
r̃(0) = r̃i and (dr̃/dz̃)z̃=0 = tan (ψ0).

The reduced momentum velocity ũe ≡
√
I(ri)/(h(ri)U

2
0 ), traces the viscous losses

on the impactor. In the inviscid limit described by equations (4.2) and (4.3), we find
ũe = 1. In the region (ii), equations (4.12) and (4.13) lead to

ũe ≈
√

1− 1.02(X/Re1/3)3/2

1 + 2.816(X/Re1/3)3/2
. (4.35)

In the limit X/Re1/3 � 1, we recover ũe ≈ 1 and at the end of region (2), where
X/Re1/3 = 0.366 (see equation (4.14)), we find ũe ≈ 0.7. Finally, in the self-similar
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region (3), equations (4.15) and (4.17) lead to

ũe ≈ 0.812
1

1 + 3.5(X/Re1/3)3
. (4.36)

At the matching point r0, X/Re
1/3 = 0.366, we recover ũe ≈ 0.7 and in the limit

X/Re1/3 � 1 we find ũe ≈ 0.286Re/X3.
In the limit α = 0 and β � 1, where the effect of gravity overcomes surface tension,

the system (4.33) and (4.34) reduces to

−ũ2 dψ

ds̃
= β sin (ψ), (4.37)

the solution of which is the paraboloid

z̃ =
β

2ũ2
e

(r̃ − r̃i)2. (4.38)

In that limit, the fluid particles at the edge of the disc are independent and fall under
their own weight.

In the limit α = 0 and β � 1, surface tension effects dominate and the system
(4.33) and (4.34) reduces to

ũ = ũe, (4.39)

and

(ũ− r̃)dψ

ds̃
= − cos (ψ). (4.40)

The integration of the system (4.39) and (4.40) leads to the catenary

r̃ = ũe − c1 cosh

(
z̃ − c2

c1

)
, (4.41)

with the constants of integration

c1 = (ũe − r̃i) cos (ψ0) and c2 = c1 ln

(
1 + sin (ψ0)

cos (ψ0)

)
. (4.42)

The catenary solution was first published in a slightly different form, in 1869, 36
years after Savart’s work, by a 27 year old self-educated man, Joseph Boussinesq.
The non-dimensional version of the solution was later produced by Taylor (1959).
Compared to the paraboloid, this latter shape exhibits a symmetry with respect to the
equatorial plane defined by dr̃/dz̃ = 0. This symmetry is broken as soon as gravity
starts to play a role.† This break in symmetry is further discussed in § 4.6.

The gravitational domain that leads to the paraboloid and the capillary domain
that leads to the catenary are separated by a critical value of β, that corresponds by
definition to β ≡ gL/U2

0 = (D0/a)
2/8, where a ≡√2σ/(ρg) is the capillary length of

the liquid–air interface (for water on Earth, a ≈ 3.8 mm). To consider the effect of
D0 presented in figure 8, we evaluate β ≈ 0.31 for figure 8(a) and β ≈ 0.078 for 8(b).
Since the asymmetry introduced by the effect of gravity is clearly observed in figure
8(a), we deduce that the symmetrical bell domain is determined by the threshold
value β 6 0.1, or Bo ≡ D0/a 6 1.

For β = 0.07, the exact solution for the bell shape given by (4.41) and (4.42),
is compared to measured profiles in figure 22 for a large range of Weber numbers

† Looking at horizontal bells, G. I. Taylor (1959) has shown that air entrainment can also break
the symmetry of the bells.
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Figure 22. Comparison between the measured bell shape and the theoretical catenary: (a) ue = 0.84,
ri = 0.139, ψ0 = 72◦; (b) ue = 0.86, ri = 0.071, ψ0 = 76◦; (c) ue = 0.88, ri = 0.040, ψ0 = 79◦;
(d) ue = 0.89, ri = 0.022, ψ0 = 82.5◦.

220 6We 6 1350. The experiments reported in figure 22 were conducted with α = 0,
using a straw to connect the inside of the bell to the outside. In all the cases, the
catenary is a good approximation of the actual profile.

4.4. On the dynamics of formation of water bells

The problem of the formation of the bells is to determine the trajectory sf(t) of the
liquid sheet front, just after the impact of the jet on the disc. As the bell is open
during its formation, no pressure effect has to be considered, α = 0, and we conduct
the following discussion in the low-gravity limit β < 0.1, so that the stationary water
bell expected at the end of the formation process is the Boussinesq catenary described
by equations (4.41) and (4.42). The formation problem is presented in figure 23, where
s(t) = uet is the curvilinear position that the front would have if the bell was fully
formed and sf(t) the actual front position. The front is characterized by its mass Mf(t)
and its velocity uf(t). The time evolution of Mf(t) is due to the incoming fluid at the
velocity ue:

dMf

dt
= ρ

πD2
0

4

U0

ue
(ue − uf). (4.43)
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Figure 23. Presentation of the formation problem.

In the limit uf = ue, the front is not fed and its mass remains constant. In the limit
where uf = 0, the time evolution of the mass is equal to the mass flow rate of the
jet Q ≡ ρπD2

0U0/4. The evolution of the momentum of the front Mfuf is due to the
pushing action of the feeding liquid and to the retracting capillary force fc = 4πrfσ,
where rf is the radial location of the front. This force is aligned with the tangent
vector −t and does not alter the equilibrium in the n-direction. This explains the
behaviour observed experimentally in figures 13 and 14, according to which the front
trajectory corresponds to the stationary bell shape. The evolution of the momentum
of the front takes the form

d(Mfuf)

dt
= −4πrfσ +

dMf

dt
ue. (4.44)

The system of equations (4.43) and (4.44) has to be solved with the initial conditions
uf(0) = ue and Mf(0) = 0. Using the variables ∆u ≡ ue − uf and d∆s/dt ≡ ∆u, the
system reduces to

dMf

d∆s
=
Q

ue
, (4.45)

and

d2(∆s)2

dt2
=

4σ

ρe
, (4.46)

with the initial conditions ∆s(0) = 0 and ∆u(0) = 0. Using the assumption that
the film thickness e changes slowly, the system can be integrated with the solutions
Mf = Q/ue∆s and ∆u =

√
2σ/(ρe). With this quasi-steady assumption, the dynamics

of the front is governed by the equation

dsf
dt

= ue −
√

2σ

ρe(r)
, (4.47)
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Figure 24. Study of the trajectory z̃f(t). (a) Comparison of the numerical integration of equation
(4.49) (NI) with the approximation (4.51) (AP): �, ψ0 = 20◦ NI; �, ψ0 = 20◦ AP; �, ψ0 = 40◦
NI; �, ψ0 = 40◦ AP; •, ψ0 = 60◦ NI; e, ψ0 = 60◦ AP; N, ψ0 = 70◦ NI; 4, ψ0 = 70◦ AP; H,
ψ0 = 80◦ NI; O, ψ0 = 80◦ AP; �, ψ0 = 88◦ NI; �, ψ0 = 88◦ AP. (b) Comparison between the
linear approximation (4.51) and the experimental measurements: �, experimental data ψ0 = 74.7◦,
ũe = 0.9, r̃i = 0.09;�, linear approximation in the same conditions; �, experimental data ψ0 = 60.2◦,
ũe = 0.92, r̃i = 0.06; �, linear approximation in the same conditions.

where e(r)= D2
0U0/(8rue). Using U0 and L= D0We/16 for the non-dimensionalization,

we obtain
ds̃f
d̃t

= ũe −
√
r̃f
√
ũe, (4.48)

where r̃f is given by equation (4.41). The characteristic time is obviously L/U0. Since

ds̃f = dz̃f
√

1 + (dr̃f/dz̃f)2, equation (4.48) can be written

dz̃f
d̃t

= ũe
1−√1− (c1/ũe) cosh((z̃ − c2)/c1)

cosh((z̃ − c2)/c1)
. (4.49)

This ODE has to be integrated with the initial condition z̃f(0) = 0. Its right-hand
side remains almost constant from z̃f = 0 to the maximal location z̃f = 2c2, where
the bell closes on the axis. To evaluate this constant, we use the average value of the
hyperbolic cosine:

cosh

(
z̃ − c2

c1

)
≡ 1

2c2

∫ 2c2

0

cosh

(
z̃ − c2

c1

)
dz =

c1

c2

tan (ψ0). (4.50)

With this mean value, we approximate equation (4.49) as

z̃f = Ṽf t̃ where Ṽf = ũe
1−√1− (c1/ũe)(c1/c2) tan (ψ0)

(c1/c2) tan (ψ0)
. (4.51)

This approximation is compared to the numerical integration of equation (4.49) in
figure 24(a). Keeping ũe = 1 and r̃i = 0, ψ0 was increased from 20◦ to 88◦. In all the
cases, the linear approximation (4.51) remains close to the numerical integration of
the ODE (4.49).

The model we propose for the dynamics predicts a quasi-constant vertical velocity
of the leading edge of the liquid sheet during the formation of the bell. This result
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Figure 25. Characteristics of water bells: (a) evolution of longitudinal extension z̃max with the
angle of ejection ψ0; (b) evolution of the formation time T̃F with the angle of ejection ψ0.

is compared in figure 24(b) to the experimental data presented in figures 13 and 14.
In both cases, the linear approximation is within a few percent of the experimental
trajectories.

To consider the location where the bell closes z̃max ≡ 2c2, we present in figure
25(a), the evolution of z̃max (ψ0) obtained using the definition of c2 in equation (4.42).
This evolution reveals the existence of a maximum value z̃max ≈ 1.32 obtained with
ψ0 ≈ 56.5◦.

Using z̃max , we can evaluate the formation time T̃F ≈ z̃max/Ṽf . In the limit r̃i � 1,
this formation time becomes a function of ψ0 only:

T̃F ≈ 2 sin (ψ0)

1−
√

1− sin (ψ0)

ln[(1 + sin ψ0)/ cosψ0]

. (4.52)

This function is presented in figure 25(b) where we observe a nonlinear increase of
the T̃F with the angle of ejection.

4.5. On the stability of water bells

Three different examples of instability of bells have been presented in figures 15, 16
and 17. The first remark on stability concerns the influence of the pressure difference,
p, between the inside and the outside of the bell. If that difference is kept equal to zero,
for example using a straw that connects both sides, the resulting bells always remain
stable. The origin of the bells’ stability thus lies in the pressure difference effect, or
more precisely in the reaction of the bell to a pressure difference perturbation. Let
us first imagine that following a pressure increase inside the bell, the volume of the
whole bell increases. In that case, the reaction of the bell tends to compensate the
origin of the perturbation and one expects the bell to remain stable. On the other
hand, if the bell volume decreases following a pressure increase, the bell reaction
amplifies the perturbation and one may expect, in the end, the full bursting of the
bell. This analysis leads to the stability criterion

dV

dp
> 0, (4.53)
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Figure 26. Influence of the reduced pressure difference α. (a) Evolution of the shape of water bells
with α for ψ0 = 76◦, ũe = 1: −H−, α = −2; −O−, α = −1; −N−, α = 0; −4−, α = 0.3; −�−,
α = 0.4; −�−, α = 0.5; −�−, α = 0.7. (b) Evolution of the water bells volume with α, ũe = 1,
r̃i = 0: −H−, ψ0 = 60◦; −O−, ψ0 = 65◦; −N−, ψ0 = 70◦; −4−, ψ0 = 75◦; −�−, ψ0 = 80◦; −�−,
ψ0 = 82◦; −�−, ψ0 = 83◦; −�−, ψ0 = 85◦.

where V is the volume of the closed bell. Looking at the system (4.33) and (4.34) in

the limit β � 1, we find that V ≡ L3π
∫ z̃max

0
r̃2 dz̃ is a function of three parameters

V (L, α, ψ0). Noticing that L and p are independent, the stability criterion (4.53) can
be written

dṼ

dp
=

1

L3

dV

dp
=

(
∂Ṽ

∂α

)
ψ0

L

2σ
+

(
∂Ṽ

∂ψ0

)
α

dψ0

dp
. (4.54)

We first concentrate on the case where the first term on the right-hand side of
equation (4.54) dominates, that is where ψ0 remains almost constant and where the
driving mechanism is the reduced pressure difference α. This effect is discussed on the
basis of the following equation:

(ũe − r̃)dψ

ds̃
= − cos (ψ) + αr̃, (4.55)

that is deduced from equation (4.34), using the assumption that gravity is negligible.
The effect of the pressure difference α on the shape of water bells is presented in figure
26(a), for α ∈ [−2, 0.7] and with the arbitrary angle ψ0 = 76◦. The initial conditions
used for the numerical integration are ψ = ψ0 at r̃ = 0 and ũe = 1. The evolution of
the shape with increasing values of the parameter α reveals that water bells tend to
form a loop for a particular value of αc (αc ' 0.5 in figure 26a). This loop formation
is reminiscent of the shape of the bells during destabilization. However, note that
the destabilization is strongly time dependent whereas the shapes presented in figure
26(a) are deduced from the stationary equation (4.55). The loop formation observed in
figure 26(a), just signals the breakdown of the model. To approach the disintegration
scenario, more analytical work on the time-dependent solution has to be done.

Projecting equation (4.55) on the r̃- and z̃-axes, leads to the system

d

ds̃

[
(ũe − r̃)dr̃

ds̃
+ s̃

]
= αr̃

dz̃

ds̃
, (4.56)

(ũe − r̃)dz̃

ds̃
+
α

2
r̃2 = cos (ψ0). (4.57)
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Figure 27. Stable cusp observed for ψ0 = 52◦.

The second equation is derived in the limit r̃i = 0. Applied at the location r̃1 satisfying
(dz̃/ds̃)r̃1 = 0, equation (4.57) gives αr̃2

1 = 2 cos (ψ0). In the same way, at the location
r̃2 defined by (dr̃/ds̃)r̃2 = 0, equation (4.57) gives (ũe − r̃2) + αr̃2

2/2 = cos (ψ0). At the
first loop location, r̃1 = r̃2 = r̃c and one deduces from the above relations that

r̃c = ũe and αc =
2 cos (ψ0)

ũ2
e

. (4.58)

With ψ0 = 76◦, we find αc = 0.48.
In the limit where the first term of equation (4.54) dominates, the stability problem

is reduced to the study of the sign of (∂Ṽ /∂α)ψ0
. The function Ṽ (α) is presented in

figure 26(b) for different values of ψ0 and in the range α ∈ [0, αc[.
In the domain ψ0 6 60◦, the stability criterion is always satisfied. In this range, one

could expect cusped shapes to be stable. This is actually the case, as shown in figure
27 where we present a stationary cusped bell obtained for ψ0 = 52◦. In the range
ψ0 > 83◦, the stability criterion is never satisfied and the bells are unstable for all
values of α. For ψ0 ∈ [60◦, 83◦] there is a value α?, smaller than αc, above which the
bell becomes unstable. This unstable domain is presented shaded in figure 28(a). One
notices in this figure that if ψ0 ∈ [60◦, 83◦], then α = 0 corresponds to a stable bell.
Since the instability leads to the bursting of the bell and thus to α = 0 one expects
the instability driven by the pressure increase α to occur once. This limit corresponds
to the instability presented in figure 16.

If the pressure increase procedure is repeated, then a new instability is observed and
as we have already mentioned in § 3.6 up to ten generations of bells can be observed.
The function Dj+1(Dj), where Dj and Dj+1 respectively represent the maximal diameter
of the mother and the daughter, is presented in figure 28(b) for the two different
diameters D0 = 0.8 mm and D0 = 3.0 mm. This figure reveals that Dj+1 ≈ 0.82Dj .

This linear relationship is discussed by considering the bell as a membrane insulating
the inside from the outside and characterized by a mean thickness e and the two
spatial average curvatures C1 and C2, defined as

C1 =
F̃

L
with F̃ =

1

z̃max

∫ z̃max

0

dψ

ds̃
dz̃, (4.59)
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Figure 28. (a) Evolution of the unstable region α ∈ [α?, αc] with the ejection angle ψ0. (b) Relation
between the daughter size Dj+1 and the mother size Dj: �, D0 = 0.8 mm; �, D0 = 3.0 mm.

and

C2 =
G̃

L
with G̃ =

1

z̃max

∫ z̃max

0

cos (ψ)

r̃
dz̃, (4.60)

where L = D0We/16 is the characteristic length in the problem. In the case where
the inside and the outside have the same pressure, the membrane equilibrium results
from a competition between inertia and curvature: 2σ(C1 +C2) = ρēu2

eC1 that can be
written

C1 + C2

C1

=
ρēu2

e

2σ
. (4.61)

Equation (4.61) shows that the shape of the bell (left-hand term) is a function only
of the Weber number (right-hand term). In this limit, the functions F̃ and G̃ can
be calculated through the integration of equation (4.41). When this equilibrium is
perturbed with a velocity decrease δue, the difference of pressure p is no longer zero
and the new equilibrium takes the form

C1 + C2 − p

2σ
=
ρēu2

e

σ
C1

(
1− 2

δue

ue

)
. (4.62)

Using the equilibrium (4.61), equation (4.62) can be simplified and leads to the
expression for the pressure variation:

α =
pL

2σ
= 2(F̃ + G̃)

δue

ue
. (4.63)

According to equations (4.35) and (4.36), if the Reynolds number is weakly affected
by the velocity perturbation, then δue/ue = δU0/U0. Using the definition of the
characteristic length, we thus get 2δue/ue = δL/L and equation (4.63) can be used to
evaluate the characteristic length variation for a critical pressure difference α?:

δL

L
=

α?

F̃ + G̃
. (4.64)

The curvature function, F̃+G̃, is presented in figure 29(a). In the range 65◦ < ψ0 < 83◦,
a good estimation of the function is (F̃ + G̃) ' 3.6 ± 10%. From figure 28(a), a
reasonable value of α?, for ψ0 ∈ [65◦, 83◦] which was the typical angles range of the
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Evolution of the bell volume Ṽ with the ejection angle ψ0 in the limit r̃i � 1 and ũe = 1.

data reported in figure 28(b), is α? ≈ 0.5. According to equation (4.64), this leads to
the characteristic length variation δL/L ' 0.14, which gives the daughter to mother
size ratio Dj+1/Dj ' 0.86. This is in reasonable agreement with the results reported
in figure 28(b), where, Dj+1/Dj ' 0.82.

We now concentrate on the limit where the second term in equation (4.54) domi-
nates. Since the instability of the bells leads to their bursting, we discuss this second
limit around α = 0, where according to figure 26(b) (∂Ṽ /∂α)ψ0

= 0. Assuming that
ψ0 results from the local balance of forces at the point of detachment (see § 4.2), one
deduces that dψ0/dp > 0 and the stability of the bell, according to equation (4.54),
only depends on the sign of (∂Ṽ /∂ψ0)α=0. To simplify the presentation, we work in
the limit r̃i � 1 and ũe = 1. In this limit, the volume of the bell V ≡ ṼL3, can be
evaluated using equations (4.41) and (4.42):

Ṽ = 2π

[(
1 +

cos2(ψ0)

2

)
cos (ψ0) ln

(
cos (ψ0)

1− sin (ψ0)

)
− 3

4
sin (2ψ0)

]
, (4.65)

The evolution of Ṽ (ψ0) described by equation (4.65) is presented in figure 29(b).
This evolution is characterized by the existance of a maximum for ψ?0 = 78.78◦, a

solution of the equation dṼ /dψ0 = 0. That value separates the stable bells (ψ0 < ψ?0)
where (∂Ṽ /∂ψ0)α=0 > 0 from the unstable ones (ψ0 > ψ?0) where (∂Ṽ /∂ψ0)α=0 < 0.

In this latter case, the instability leads to the bursting of the bell which keeps
α = 0 but does not affect the origin of the instability, ψ0 > ψ?0 . One thus expects the
instability to reproduce itself continuously. This limit corresponds to the instability
presented in figure 17. The period T , of the instability is presented in figure 30(a) as
a function of the characteristic time L/U0. This figure suggests a linear relationship
T ≈ 19.7D/U0, which is of the order of the formation time TF (ψ0 = 87◦) = 13L/U0.

The instability presented in figure 15 is a little different in the sense that the bell is
initially stable, with an angle of ejection ψ0 = 75◦. However the upward bulge modifies
this angle as it reaches the edge and the whole bell undergoes an unstable cycle. This
instability occurs with a well-defined period presented in figure 30(b) as a function of
the characteristic time L/U0. In this case also, the period of the phenomenon is of
the order of the formation time.
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Figure 31. Presentation of the particle analogy.

Compared to the ideas presented in Clanet (2000), the present analysis of water bell
stability has considered the effect of the jet diameter and thus reveals the existence
of a new destabilizing scenario, through the recirculation of a liquid bulge. It also
provides a detailed quantitative study of the cascade instability through the discussion
of the relation Dj+1(Dj). Finally, the study of the pressure effect has confirmed its
influence on the stability but also revealed the existence of stable cusps, observed
experimentally.

4.6. A particle analogy

The particle analogy we propose, in order to complete the physical description of
the water bell problem, is presented in figure 31. A mother particle of mass, M0, and
velocity, U0, is subjected at t = 0 to the disintegration energy, M0Ed, which leads to
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twin particles of mass M1 and velocity U1, each one forming the angle ψ0 with the
initial direction of the mother.

The conservation of mass after the disintegration is written M1 = M0/2. It follows
that the conservation of momentum, 2M1U1 cos (ψ0) = M0U0, reduces to U1 =
U0/ cos (ψ0). Finally, in the limit where the total energy of the particles corresponds
to their kinetic energy, energy conservation leads to

U2
1 = U2

0 + 2Ed. (4.66)

Using the result of the momentum conservation, we get the expression for the angle
of ejection:

cos (ψ0) =
1√

1 + 2Ed/U
2
0

. (4.67)

In the limit 2Ed/U
2
0 � 1, where the disintegration energy is weak compared to the

initial kinetic energy, the twin particles follow almost the same trajectory as the
mother. In the opposite limit 2Ed/U

2
0 � 1, the angle of ejection tends to π/2. This

behaviour of the angle of ejection is close to that observed for ψmax0 .
If we consider the effect of an internal energy per unit of mass, Eint, the balance

(4.66) is replaced by U2
1 = U2

0 + 2∆E, where ∆E ≡ Ed − (Eint(1) − Eint(0)). Since the
momentum equation is not affected, the expression for the angle is simply:

cos (ψ0) =
1√

1 + 2∆E/U2
0

. (4.68)

Compared to the previous expression (4.67), the disintegration energy Ed has been
replaced by the difference ∆E. It follows that if the internal energy of the twins, Eint(1),
is larger than the internal energy of the mother, Eint(0), then ∆E < Ed, and the angle
of ejection is reduced. This behaviour reproduces that of the angle of ejection of the
liquid film for moderate Weber numbers, that is when the surface energy cannot be
neglected compared to the kinetic energy.

Assuming that after the disintegration, the twin particles are connected by a spring
of strength ks [M/T 2], we look for their trajectory, first in the zero gravity limit,
g = 0. The momentum evolution equation projected onto r- and z-axes is

M1

d2r1

dt2
= −ksr1, (4.69)

and

M1

d2z1

dt2
= 0, (4.70)

where r1 and z1 are the coordinates of a twin. This system leads to the trajectory

r1

R
= tan (ψ0) sin

(z1

R

)
, (4.71)

where R ≡√M0U
2
0/(ks) is the characteristic length of the problem. This trajectory is

obtained with the initial condition (dr1/dz1)0 = tan (ψ0). Each of the particles has a
sine trajectory in the (z, r)-plane and will meet its twin at zmax/R = π. This trajectory
is obviously symmetrical about ze/R = π/2 and is the equivalent of the catenary
solution. The only difference with the water bell problem is that the connecting force
does not act normally to the trajectory but always along the radial direction.

The main advantage of this model is to improve the understanding of the effect
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of gravity. Indeed, in this particle analogy, gravity changes z1 = U0t (which results
from equation (4.70)), into z1 = U0t+ gt2/2. Since equation (4.69) remains the same,
trajectory of the twins with gravity is described by the equation

r1

R
= tan (ψ0) sin

[
1

F

(√
1 + 2F

z1

R
− 1

)]
, (4.72)

where F ≡ gR/U2
0 is the reduced gravity. In the limit F � 1, we recover the

sine trajectory (4.71) and in the limit, F � 1, we recover the ballistic trajectory
z1 = gr2

1/(2 tan2(ψ0)U
2
0 ).

An evaluation of the symmetry of the trajectory is given by the ratio SYM ≡
zmax/ze − 2. When SYM > 0, the equatorial plane is closer to the disintegration
location than to the connecting point zmax , and for SYM < 0 the opposite behaviour
is observed. At SYM = 0, the equatorial location corresponds to half the maximal
location zmax . Using the trajectory (4.72), we get

SYM =
2πF

4 + πF
. (4.73)

Since F > 0, this expresion is always positive and continuously increases from 0 at
F = 0 to 2 at F � 1. The symmetry of the trajectory observed in the limit g = 0 is
thus broken as soon as gravity is considered.

Physically, the acceleration due to gravity makes the velocity of the particles greater
after the equator than before. We first imagine that the trajectory is symmetrical. Then,
at the two locations ze − c and ze + c, where c ∈ [0, ze] is a constant, both the radial
location r and the radius of curvature Rc are the same. If r is constant, the force of the
spring is constant. However, even if Rc is constant, since the velocity is increased by
gravity, it follows that the centrifugal acceleration U2/Rc, is increased. The assumption
of symmetry does not satisfy the equality of forces. It follows that the symmetrical
shape is not stable and must be replaced by the shape for which, if r is the same, as
U increases, Rc decreases so that U2/Rc remains constant. The radius of curvature at
ze + c is then larger than at ze − c. This implies that the equatorial plane is closer to
the disintegration location than to the connecting point zmax .

5. Conclusion
This paper is devoted to the water bell problem first investigated by Savart in 1833.

Several questions have been addressed concerning the conditions of ejection of the
film from the impactor, the ejection angle ψ0, the shape of the bells, the dynamics of
their formation and finally their stability.

Concerning the detachment of the film, we have shown that for a given jet diameter
and velocity, it can only occur between two limits: one corresponding to a large
diameter ratio X > 1 and the other one to X < 1. The conditions for detachment at
these limits have been experimentally determined and then modelled.

When these conditions are fulfilled, the film leaves the impactor with the angle ψ0.
In the limit We� 1, this angle depends only on X but for moderate Weber numbers
ψ0 becomes a function of We.

Concerning the bell shape, with no pressure difference between the inside and the
outside of the bell we have shown that the catenary first proposed by Boussinesq is
a good estimation of the shape, provided one considers the modifications of the flow
related to the impactor and takes the correct ejection angle ψ0 related to these initial
conditions.
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The study of the dynamics of formation reveals a quasi-constant vertical velocity
of the edge of the liquid sheet Vf , and a formation time TF , strongly dependent on ψ0.

Finally, we have derived a general stability criterion and shown the sensitivity of
the bells to both the pressure difference across the liquid sheet and to the ejection
angle from the impacting disc. In this later case, we find a critical angle of ejection
above which the bell is periodically destroyed and created. The period of the cycle is
shown to scale linearly with the formation time TF .

It is hoped that this paper will stimulate more analytical work on the time-
dependent solution which has been discovered.

This work was initiated by a study conducted in Grenoble at the LEGI with
E. Villermaux on the atomization process of liquid sheets. I thank Alberto Verga,
Howard Stone and also the three referees for a critical reading of the original version
of this paper. Their remarks and suggestions, as well as stimulating exchanges, have
lead to the improvement of the final version of this paper. I also do not forget
that everything would have been much more difficult without the skillful technical
assistance of Jacky Minelli (IRPHE) and Serge Layat (LEGI).

Finally, this work found a special resonance on Thursday 18 November 1999, at
4.00 pm, when David Quéré gave me the opportunity to close the loop by presenting
it at the Collège de France. I may add that the resonance was even stronger with the
active presence of P. G. de Gennes.
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